Continuous Integration

Methods and Approaches (and why they are appropriate)

Our chosen method for implementing our Continuous Integration was using Github Actions.
We chose this method for many reasons, chief among them being how easily it
integrates with our use of Github in the rest of the project, in addition to the large
quantity of documentation available for the method. This saved us time organising
our continuous integration between the development team, and used a platform that
everyone was familiar with, reducing the likelihood of misuse or misunderstanding
the continuous integration platform. Overall, using Github actions was the best option
for our development team to use, due to their familiarity with the existing platform,
and how our team was already working.

Github Actions allows us to easily and automatically test our codebase every time
someone pushes an update to the Github repository, as well as giving us valuable
feedback on how many tests have passed or failed, in addition to information on how
much of our codebase is covered by our tests. This meant that the code being
written was less likely to cause problems when merged, saving time in the
development of the game, and making it less likely that time had to be taken fixing
parts of the codebase that broke when merged. These features allowed us to
implement our Continuous Integration efficiently and effectively, and minimised risks
to slowing development time over the course of our project.

Our actual integration structure

Our continuous integration is built using Github Actions. It is triggered every time a
merge is pushed to the main branch, and builds the whole project to check for any
compilation errors. It also runs the j-unit tests, and if any fail, fails the build and
sends a notification email



