Change Report - Group 10 Cohort 1

In the pre-planning of our project we held a group meeting to discuss the current state of the
inherited project and the areas which needed the most changes to grasp an idea of where to
start. In that meeting we took notes and delegated tasks to different group members whilst
retaining our group roles from assessment 1. We documented these plans in a Discord
server, which we initially created for our previous assessment with modifications to support
the development of the new deliverables. We also created a google sheets table which we
populated with ideas for changes we wanted to make, with columns for the change number
(for tracking purposes), the change title and description and whether the change had been
made yet.

Our methodology towards development remained the same as not only our previous project,
but also as that of the group whose project we picked up. The scrum approach was found to
be the best way to plan development week by week and review our progress later in each
week. Meetings were scheduled ahead of time each week with a room being booked for
in-person meetings. As the deadline drew closer group members went home over the
Christmas period, at which point our group meetings moved to Discord.

We created a shared google drive to store all of the inherited deliverables, which we also
decided would further be useful to store updated/additional deliverables. Our file manager,
James Farrow , also stored a backup locally as a precaution for the possibility of file
corruption or loss of access to data due to network issues.

At numerous stages in development we reviewed changes made and consequently further
changes which we would need to make. We did this through further group meetings to
review where we were currently at and what we needed to work on further. These meetings
took place both in person and virtually. When changes were made to the implementation we
submitted them to a google form, which nicely categorised the author of the change, the
change made and the reasons for the change.

In order to review changes made to the implementation, we used Continuous Integration on
our github repository. Whenever code was pushed onto the main branch, Cl would
automatically build the project and run it for different test cases, which we set ourselves. Any
issues brought up by a failed build or error produced by Cl would then be immediately
brought to the attention of the implementation team, allowing them to address the issue.

With development of the project the requirement came around to update deliverables to
reflect our development and adaptation of the project. With these changes came the need to
keep track of anything we updated through documentation, which is the purpose of this
current document - Change2. Below the changes to each of the 4 key deliverables have
been specified, with explanations for changes as well as things that we left the same, and
the reasoning behind each one.

mailto:zmk508@york.ac.uk

Change Report - Group 10 Cohort 1

Requirements

When picking up another team’s project we understood that the requirements would be
different to the ones they had previously followed, and as such we’d need to identify them
through comparing their project to the updated brief. This is stated in a section of the eliciting
our requirements header starting with “assessment 2” in brackets to indicate the additions
we’ve made. This is consistent between each additional information we’ve added in
subcategories.

Assessment 2 required us to add additional functionality to the game of our choice. As such
the requirements deliverable had to be updated to reflect what was further required to meet
the client requirements. We adopted the previous group’s layout of requirements and added
some new user requirements as specified, which contained different categories of
requirements in tabular form, totalling in 4 tables. The requirements in each table are
ordered based on priority from highest to lowest.

Given that we were picking up the previous team’s requirements document, we decided to
follow the same format and layout of their requirements, we felt that we didn’t need to add a
large description of how we’re continuing with their method. As such, we included a single
sentence to explain our thought process.

In the Single Statement of Need, additional information was added to reflect the updated
requirements. These additions are reflected in bold text which has been added to the
statement of the previous group.

One of the requirements was a leaderboard that shows the top 5 scores with names of each
user who gained them. This was added as an essential requirement to the table of user
requirements as well as the system requirements. As this addition was categorised under
features that the game must contain, the significance of completing the task is listed as
essential. Below is the user requirement for the addition of a leaderboard.

UR_LEADER The user should be able to view a leaderboard of the APPROVED
BOARD top 5 scores and the names of the people with those Essential SR_LEADER
scores. If the user scores a top 5 score, they should BOARD

be asked to input their name to be added to the leaderboard.

The leaderboard also has an associated system requirement; the game would store the data
of the top 5 scores and the user who earned each one. When required the game should also
display this information to the user. Below is the system requirement entry for the
leaderboard.

SR_LEADE The game must include a leaderboard, which Essential APPROVED
RBOARD stores and displays thetop 5 scores with a UR_LEADE
name connected to each score. If a user’s RBOARD

final score places within the top 5 they
should be asked to input their name to be
added to the leaderboard.

Change Report - Group 10 Cohort 1

Given that this requirement does not change any major components of the game, no
changes are required to the non-functional or constraint requirements.

Another requirement included in the updated client brief states that the game should feature
achievements for completing certain tasks within the game. The brief proposes that these
achievements could influence the player’s final score either positively or negatively,
assumedly dependent on the nature of the achievement. The associated user requirement in
the deliverable is shown below.

UR_ACHIEV The user must be able to earn achievements APPROVED
EMENTS whilst playing the game if they meet certain Essential SR_ACHIEVEMENTS
conditions. These achievements could influence

the final score of the player, either positively or

negatively.

The corresponding system requirement can be seen here:

SR_ACHIE The game must feature achievements which Essential APPROVEJl
VEMENTS can be earned in a playthrough with each UR_ACHIE
achievement having a criteria to unlock. The VEMENTS

game should keep track of unlocked
achievements to influence score and to
ensure the same achievement is not earned
multiple times.

On top of these specific additions, the requirement for the final product has changed. Instead
of only having to meet certain requirements specified in the initial brief, every requirement
mentioned in the brief must be fully complete. Therefore, every user and system requirement
had their priority raised to essential to reflect this. In order to still reflect some level of
hierarchy when it comes to tasks, tasks are ordered in the table from first to complete to last
(which was already followed to an extent by the previous group).

Change Report - Group 10 Cohort 1

Architecture

The architecture deliverable of the previous group contains well-made graphs and diagrams
representing the different features, classes and other components of the game. There is
however an issue with these diagrams, being that it does not reflect the updated state of the
game including new functionality. Given this fact, the diagrams had to be reconstructed to
reflect our implementation.

The document begins with an Introduction and Overview of the Tools Used, of which we did
not make any changes. This is because the listed tools match the tools we used for
development, being Java as the programming language, LibGDX as the library implemented
to build the project, and using PlantUML for UML diagrams. During core implementation all
of the programs used by our group have already been listed in the deliverable.

Moving on, the Architectural Diagrams and Structure subheader features a UML graph of the
architecture. Given that we’ve picked up this group’s project, the UML diagram produced by
them is still highly relevant. However, in proceeding further with implementation towards a
finished product, new elements have been introduced which should be reflected in the UML
graph. As such, our group made an updated graph which can be seen just below the original
in the deliverable. Following this, each component has a short description for each of its
inclusions which we once again updated to reflect new additions to the graph. This is located
at the bottom of the preexisting deliverable.

An activity diagram was also created to represent the behavioural architecture of the project.
This activity diagram is a flow chart which features all of the processes occurring within the
game as it runs, with different branches to represent process states and conditions. Once
again, this diagram still held high significance towards the project but still had to be updated,
especially with consideration towards new additions introduced in the updated brief. Our
updated graph is again provided just below the preexisting one to allow for a clear
comparison between the obtained project and the changes introduced by us. Key actions are
listed alongside the diagram, however these were slightly barebones and lacked
functionalities that we chose to add including events and also achievements, which were
newly introduced by us.

Alongside the other graphs, we've added some specialised graphs to reflect our new
additions to the project. Several diagrams are included here: an abstracted diagram which
has attributes and methods removed, an unpackaged diagram, a Ul package, an
achievements package, a graphs package and a map package. All of these diagrams are a
great way to represent different parts of the project through individual components and also
allows us to reflect on certain details, such as a new addition in the achievements package.
They’re all at the bottom of the graph with brief descriptions of what each diagram shows.

The group included the evolution of their architecture as 7 distinct stages, each with more
development towards the intended final outcome. We updated this with 2 additional
iterations, describing how we built upon the preexisting project and introduced new features
as specified on the brief. We also reflected on how we revisited some of the preexisting
features and built upon them due to them not being fully implemented as required.

Change Report - Group 10 Cohort 1

Justification was made for all core components of the architecture created by the previous
group. This didn’t explore specific implementations but instead explains design choices and
organisation with reference to how the game is composed. We made no major changes in
this regard, so we did not update this part of the deliverable.

Finally, requirements traceability is a section of the deliverable which explains how core
functionalities align with user and system requirements. The general explanation here was
suitable and did not need any updating, however an additional point was added to reflect
traceability of newly added functionality.

Method Selection and Planning

When picking up another group’s project, it was recognised that the previous group likely
used different methods and/or planning processes during their development of the project.
With that in mind, we reviewed their method and planning techniques and updated the
document where necessary to reflect our methodologies we’d be moving forward with.

The first category was the chosen methodology. Coincidentally, the group we chose opted
for the Scrum approach, which is the same method we’ve adopted for development. Given
this fact, there was no requirement for us to update the method selection section of the
document. However, we did further consider a new method in reflection of the more clear
final goal. This method was the plan-driven approach; with a clear picture of an end product
now in sight, it would be plausible to map out everything we had to do and work towards a
final product. Despite opting for the Scrum approach going forward regardless, it would be
useful to reflect our consideration in the updated deliverable.

Moving onto Collaboration and Documentation tools, we added additional tools which we
used to their documentation. These tools included Discord for communication as opposed to
Slack due to familiarity, and whatsapp as an additional communication tool to organise
meetings. A small paragraph was added to separate their tools and ours, however we
followed the same format and explained why our chosen tools were better suited for our
project than the previous group’s tools. We chose not to remove the tools listed by the
previous group as they remain a reflection of the project’s development process regardless
of whether we adopted them or not.

As a side note, like a lot of the other graphs created by the previous group in the
deliverables, the Development Tools table produced by the previous team corrupted when
converting the PDF documents to google docs. As such we had to rebuild the table however
we’ve taken the effort to reconstruct this table as closely to the original as possible.

With regards to the development tools used, these were essentially identical to the tools we
planned to use for further development, which was a motivating factor for the choice of
project we went with. However, under version control where Github is referenced, we
specified our use of continuous integration through github, adding it onto the information
already included on the previous team’s use. However, the previous team never mentioned

Change Report - Group 10 Cohort 1

PlantUML here despite it being a significant component in the development of the project,
therefore we added an additional table entry being PlantUML.

The previous group had a different approach to Team Roles and Organisation compared to
us, with their roles being tailed more towards monitoring specific tasks than generalised
roles within a team setting that allow the team to work efficiently. To reflect this, we updated
the documentation to reflect our team roles (carried over from assignment 1) with reasoning
as to why these roles are better suited to our project than the previous group’s roles.

The systematic plan used by us and the previous group both consisted of a gantt chart used
to manage time spent on different parts of the project. Since our systematic plans were
effectively the same there was no need to majorly change this section of the deliverable.
However, our group created another gantt chart and added it at the bottom of the document
to reflect how we further planned out the time to be spent on different tasks.

Risk Assessment and Mitigation

When inheriting this document table data would become corrupted; multiple attempts were
made to convert the PDF in different formats, however the table would always break when
attempting to do so. An example of this is seen below:

Likelihood

Severity (%) Mitigation
(%)
Strategy

40%-Dueto
40%- If the
The Project Lead
the winter

((((

longer periods,
likely thata
picked up by
they will checkin
team member
other team

In light of this, our first priority was to completely reconstruct the table, keeping text the same
but manually copying it over from the provided PDF. Due to this some slight inconsistencies
may exist between the previous document and our updated version. Once the table was fully
restored we began considering updates to the design and contents of the document.

Like our group, the prior group also opted to use a risk register in tabular form as a way of
keeping track of different potential risks. We decided that their risks were suitable, however
some additional risks had to be considered as we proceeded with the project, especially with
the new functionality being implemented. As for the preexisting risks, we had to reassign risk
owners for each risk. These owners have been stated in bold below the previous risk owners
for each risk in the table.

With the introduction of Continuous Integration to our project came a new risk to consider.
Continuous integration helped in the testing of the project, however there always came the

Change Report - Group 10 Cohort 1

risk that it would suffer a failure, either due to improper setup or an issue in the code. As
such, a new risk was added to the bottom of the risk table to reflect this.

Pre-existing risks had mitigation strategies that, whilst effective, required some slight
tweaking to work for our team. For example, some of their mitigation strategies involved use
of Slack; an application for team communication which we opted not to continue with. As
such, where Slack is referenced we’ve included reference to our alternate software of choice
(in this example that would be Discord).

Similarly, some risks were handled based on different team roles and the responsibilities
they held. In the table wherever a team role is mentioned our equivalent role is listed in
brackets for the sake of clarity. Furthermore, some risks that they opted to handle as a team
were tied to a specific individual for our development for effective organizational purposes.

A feature which was missing from the previous team’s table was clearer indication of the
different risk levels of tasks - previously risks were represented solely as percentages. Our
group preferred an approach that was easier to understand visually, for which we colour
coded different risks based on their likelihood and severity.

